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SUMMARY 

We study the generation of periodic velocity and temperature fields in a plane horizontal crucible of molten 
metal under the action of a horizontal temperature gradient. The geometry and the boundary conditions are 
similar to those encountered in the Bridgman growth process of semiconductor crystals, although the present 
paper is limited to two-dimensional flows. We use transient finite difference and finite element algorithms 
which lead to identical results. We demonstrate the oscillatory mechanism in two different geometries. 
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1. INTRODUCTION 

Several review papers over the last few years have been devoted to the analysis of hydrodynamics of 
crystal growth; among them, we cite References 1-3. They emphasize the complexity of the 
phenomena taking place in the melt during the growth of the solid phase. Leaving apart the 
transfer of impurities, the main problem is to predict the motion of the liquid-solid interface during 
the complete growth process, and to determine the velocity and temperature distribution in the 
melt. The problem is not to find an appropriate mathematical model for describing the process; 
there is no doubt that the Navier-Stokes equations with the Boussinesq approximation coupled 
with the energy equation are adequate as long as the flow remains laminar (this may not be true for 
some practical situations where a turbulent regime might be detected). However, the definition of 
appropriate boundary conditions remains a central preoccupation; the boundary of the flow 
domain is subject to radiative and convective transfers which are very difficult to specify a priori for 
the existing growth processes. 

The main problem lies in the solution of the set of partial differential equations for three main 
reasons. (i) The geometry of the flow domain changes in time with the motion of the interface. In 
particular, the boundary of the domain is curvilinear. (ii) The values taken by the non-dimensional 
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parameters governing the flow in actual processes, i.e. the Grashof and the Rayleigh numbers, 
make it essentially impossible to use linearized analyses; moreover, at these high values, the flow 
may bifurcate from a steady-state regime to a periodic flow. (iii) The geometry of actual processes 
together with experimental results suggest that the flow is truly three-dimensional. 

The situation has changed however over the last few years. The development of finite element 
methods for the solution of the transient Navier-Stokes equations is of considerable help for 
studying flows in a moving domain with a curvilinear boundary and diverse boundary conditions. 
The versatility of finite elements for solving such problems is certainly one of their main assets. 
Simultaneously, the availability of supercomputers allows one to obtain solutions within a 
reasonable time, although the situation in that respect is still far from ideal. As far as one wishes to 
obtain a detailed solution which is able to exhibit the short time periodic oscillations in the melt 
together with the long time motion of the liquid-solid interface, one finds that, even in a two- 
dimensional flow, the required supercomputer CPU time is of the same order of magnitude as the 
actual growth process, which is of the order of 24 h. 

In the present series of papers, we wish to investigate several aspects of the horizontal Bridgman 
crystal growth process, and our examples will be based on the growth of gallium arsenide 
crystals. A typical crucible containing the melt has the shape of a half circular horizontal cylinder 
with rounded ends. The crucible is surrounded by a furnace which produces a temperature gradient 
between the ends of the melt. While the crucible is being held fixed, the furnace moves slowly in the 
horizontal direction, carrying the solidjiquid interface along. The Prandtl number for such flows is 
of order lo-’, and typical values for the Grashof number are of the order of lo6. Our first two 
papers in this series will be devoted to the flow in the absence of a growing solid phase, and the third 
paper will concentrate on the calculation of the interface. 

It is well known that periodic temperature oscillations of large amplitude and with periods 
ranging from a few seconds to a few minutes may occur for many different crystal growth 
configurations. A qualitative review of the field may be found in Reference 4. Experimental studies 
on molten gallium performed by Hurle et aL5 show that the oscillations in a rectangular boat, 
heated and cooled at the opposite ends, set in once critical temperature differential across the boat 
has been reached. Theoretical explanations of the onset of instability have been suggested by Hart6 
and Gill.7 They rely upon an idealized two-dimensional steady-state parallel flow upon which one 
superposes a three-dimensional perturbation. Here, we will limit ourselves to two-dimensional 
flow analysis. Roughly, we examine the flow in the plane of symmetry of the crucible, with the 
assumption that the velocity and the temperature gradient vanish in a direction normal to the 
plane of symmetry. It will be found that a purely two-dimensional mechanism exists for predicting 
the oscillatory behaviour. In our second paper, however, we will find that the true three- 
dimensional nature of the geometry has a strong impact upon the flow. 

The problem of calculating the plane flow at a high value of the Grashof number has been 
attacked with different algorithms; a good comparison between their relative results has given us 
the necessary confidence in our techniques. The occurrence of oscillatory buoyant motion of air in 
a room was predicted several years ago by Fromm* with the development of a transient finite 
difference code. Our first approach has been to adapt Fromm’s explicit method to the calculationof 
low Prandtl number flows. When the Prandtl number is too small, the maximum time step of the 
explicit technique is indeed bounded by the calculation of the energy equation. Replacing the 
explicit temperature calculation by an alternating direction implicit method has allowed us to 
control the time step by means of the Courant condition. 

Simultaneously, we have developed finite element techniques for the eventual calculation of the 
liquid-solid interface. A classical steady-state technique for solving Navier-Stokes equationsg has 
been used together with the transient finite difference code. It was found that the loss of 
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convergence of the steady-state finite element code would coincide with the emergence of 
undampened oscillations calculated by means of finite differences. Next, we have extended our 
finite element code to the calculation of transient flows. Several methods have been tested; a 
comparison is given by Crochet et al." Finally, we have retained the time-stepping technique 
proposed by Gresho et al." which will also be found most suitable in our third paper where we 
predict the liquid-solid interface. 

Having explained the physical problem in section 2, we will review the basic equations in 
section 3. The finite difference and the finite element methods will be briefly reviewed in sections 4 
and 5, respectively. In section 6, we will examine the nature of the steady-state solutions and finally, 
in section 7, we will analyse the onset of periodic oscillations. 

2. GEOMETRICAL AND PHYSICAL DATA 

A typical boat geometry used-for growing gallium arsenide is shown in Figure 1; it has the shape of 
a half circular cylinder of length L and radius h with rounded ends. An actual value of L is of the 
order of 20 cm, whereas h is of the order 2.5 cm. During the growth of the gallium arsenide crystal, 
the domain occupied by the liquid phase reduces in length. The longitudinal temperature gradient 
imposed on the melt for growing the crystal generates vorticity, and recirculating vortices take 
place in the crucible. The temperature gradient in actual processes is of the order of 2" C/cm. The 
cylindrical shape of the boat and the no-slip boundary conditions on the walls would undoubtedly 
generate a truly three-dimensional motion, which experiments have shown to be time-dependent. 
Three-dimensional transient calculations are still extremely expensive in computer-time unless one 
uses a set of coarse numerical approximations. As a first approach, it is instructive to deal with a 
two-dimensional model problem. 

We wish to investigate the flow configuration in the simplified geometry shown in Figure 1. The 
temperature difference between the end walls is imposed along the x-direction. The z-component of 
the velocity field vanishes and the velocity components and the temperature are z-independent. 
The domain is finite in the x and y directions, and we will consider the flow for various aspect ratios 
L/h. The two-dimensional geometry of the problem is shown in Figure 2. 

For the velocity field, we assume that the fluid does not slip along the walls and that the upper 

A 

Figure 1. Perspective view of the crucible and idealized geometry 
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T = T ( x ) , u = v = O  

Figure 2. Plane geometry and boundary conditions for the idealized problem 

Table I. Physical properties of gallium arsenide 

Melting point: 1238" C 
Density p in the liquid phase: 5.71 g/cm3 at 1245°C 

5.63 g/cm3 at 1320" C 
Kinematic viscosity: 

T =  1285 1290 1295 1305 1310 1325 "C 
v =0.320 0.297 0.280 0.266 0.260 0.254 cs 

boundary is a free surface of a fixed horizontal shape. Thus, we assume that the tangential force and 
the normal velocity component vanish on the surface y = h. The different boundary conditions 
applied on the upper and lower surfaces break the symmetry of the problem which would occur in a 
flow domain surrounded by solid walls. 

The thermal boundary conditions are much more difficult to apply. In the actual Bridgman 
growth, the transparent quartz boat is surrounded by radiating heater elements and an accurate 
simulation would require the calculation of heat exchanges in a radiating enclosure. In the present 
paper, we will consider an idealized situation where the temperature is imposed on the walls of the 
crucible. On the free surface, we will impose two sorts of extreme conditions: (i) the temperature is 
imposed on the free surface and equals the temperature on the lower wall; (ii) the free surface is 
thermally insulated. We will find that for the highly conducting fluid being considered here the 
period of oscillation of the melt is scarcely affected by the thermal boundary condition on the free 
surface. 

The melting point ofgallium arsenide is 1238" C and at such a high temperature, accurate data on 
the physical properties are scarce. Table I shows the values of physical properties given by Glasov 
et al." Data are lacking between the melting point and the lowest temperature of 1285°C in 
Table I. We will assume that the viscosity v keeps a constant value since typical temperature 
differences in the liquid phase will not exceed 20" C. Whenever an actual value of the viscosity is 
needed for converting non-dimensional results, we will select the value of 0 . 5 ~ ~  obtained by 
extrapolation from Table I. From the values of the density at 1245 and 1320"C, one obtains the 
volumetric coefficient of thermal expansion 

= 1.9 10-4oc-1 (1) 
It is difficult to obtain a precise evaluation of the coefficient of thermal diffusivity IC in the liquid 

phase. For molten metals, it is generally agreed that the Prandtl number V / K  lies in the range 0-015 
to 0.05. Most of the calculations presented here will be based on P r  = 0.01 5 .  A later investigation by 
Jordan13 based on a comparison between the solid and the liquid states ofgallium arsenide, has led 
to a value of Pr = 0069. Such a value will be adopted for some of the calculations in Part I1 and 111 
of the present work. 
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3. BASIC EQUATIONS 

We wish to solve the two-dimensional form of Navier-Stokes equations with the Boussinesq 
approximation. Let TI be a reference temperature (i.e. the melting point) and p 1  the density at T,. 
The Navier-Stokes equations are 

aU au au 1 aP 
P 1  ax at ax  a y  

+ VAU = - + -U + - v ,  - -_ 

p av av av 1 a P  
P 1  aY p ,  at ax a y  

a U  av -+-=o, 
ax a y  

+ VAV - -g=- + -U + - v ,  --- 

where A is the Laplacian operator, u,  v are the velocity components in the x and y directions, p is the 
pressure and g is the gravitational acceleration acting in the negative y direction. The density p 
entering the buoyancy force term depends linearly upon the temperature T, 

P=PlC1--(T--T,)l. (3) 

Equation (3) couples the momentum equations (2) with the energy equation given as follows: 

aT aT dT 
- + -u + -v  = KAT, 
at ax ay  (4) 

where we have assumed that K is temperature-independent and where heat generation by viscous 
dissipation has been neglected. 

It is useful in the present context to introduce non-dimensional variables. We note that the 
boundary conditions do not provide us with a characteristic velocity associated with the flow; 
under such circumstances, it is natural to introduce the following non-dimensional, starred 
quantities: 

x = hx* ,  

u = (v /h)u*,  

y = hy*, 

u = ( v / ~ ) v * ,  

t = (h2/v)t*, ( 5 )  

P = - PlSY + (PlV2/h2)P*. 

T - T 1 = ( T o - T 1 ) T * ,  

The symbol h denotes the depth of the crucible and (To - T l )  isthe temperature difference between 
the end walls. Introducing (5) in (2)-(4) and omitting the stars in the non-dimensional equations, we 
obtain 

au au au a P  
ax at ax ay 

a P  av av av 
aY at ax ay  

+ AU =- + -U + - v ,  -- 

--+ Av + GrT = - + - u  + - v ,  

au av 
ax ay  
-+-=o,  
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A T = P r  - + - u + - u  (”af ;: i;) 
For a given aspect ratio and for a given temperature profile between the end walls, the solution 
depends solely upon the Prandtl number defined in section 2 and the Grashof number Gr defined 
by 

Gr = ga(T, - T0)h3/vz. (7) 

The term GrT in (6b) gives the importance of the buoyancy force within the flow, whereas Pr 
indicates the relative importance of heat convection with respect to diffusion. The Rayleigh 
number of the flow is defined as 

Ra = P r  Gr = ga(T, - T o ) h 3 / ( ~ v ) .  (8) 

Typical values of the Grashof number for the Bridgman growth of gallium arsenide lie within the 
range of 5 x 10’ to 5 x lo6. 

Finally, with the non-dimensional form (6) of the governing equations, we associate the 
following set of boundary conditions: 

x = O :  u = u = O ,  T = l ,  

x = L / h :  u = v = O ,  T = O ,  

JJ = 0: u = u = 0, T = 1 - (xh)/L, (9) 

y = 1: au/ay = 0, u = 0, T =  1 - (xh)/L or aT/ay = 0. 

We will now review the numerical algorithms which have been developed for solving (6) with 
the boundary conditions (9). 

4. FINITE DIFFERENCES 

Experimental data, together with earlier theoretical results for high values of the Grashof number, 
indicate that one may expect a time-dependent behaviour of the flow, associated with the 
occurrence of several vortices and important convective terms in the momentum and the energy 
equation. In the finite difference literature, Fromm’s work* shows examples of time-dependent 
buoyancy driven flows at very high Grashof numbers. Fromm’s finite difference algorithm must be 
slightly modified for calculating flows at a very low Prandtl number. 

The finite difference scheme is based on the stream-function-vorticity formulation of the 
Navier-Stokes equations. Let II/ be the stream function, which is such that 

a* a* 
aY ax u = - ,  u = - - - - .  

Equations (6) become, after the elimination of p, 

aT a(UT) a(uT) 1 
at ax  ay  Pr 

aa a(uw) a(vw) aT 
at ax  ay  ax 

+-AT 

+ Am + Gr--, 

- 

- _-  - _ _ _ _ _  

A + =  -aw. 
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Fromms' method is entirely explicit as far as the calculation of the time derivatives is concerned. 
The time integration of ( 1  1) is performed in a series of steps which may be briefly schematized as 
follows. Let t ,  be the value of t  after the nth step, and let 6t = t ,+ - t , .  Let T,, $,,,on, u,, u, be the 
values of the variables associated with time t,; one decomposes the calculation as follows: 

(vi) A$n+l= -wn+1. 

Details on the boundary conditions and the discretization operators may be found in Reference 8; 
in particular, a fourth-order approximation is used for calculating the convective terms in steps (i) 
and (iii). The advantage of the explicit algorithm (12) is that (vi) is the only equation requiring the 
solution of a linear system. Our main problem here has to do with the stability limits for the 
selection of 6t. Let ax, 6 y  denote the dimensions of a cell. The successful treatment of convective 
terms in (i) and (iii) requires compliance with the Courant condition everywhere in the mesh, i.e. 

max [lu16t/6x, lu16t/6y] < 1 .  (13) 

6t < min [ (6x2 ,6y2)~r /4 ,  (6x2,6y2)/41. (14) 

Simultaneously, the stability of the explicit steps (ii) and (iv) requires that 

When the Prandtl number is of order 1, the maximum time step is usually determined by (13), 
which is valid for implicit as well as explicit schemes. However, when Pr is very low, the first 
inequality (14) requires very small time steps, and the fully explicit technique is found to be 
prohibitive. In order to circumvent that difficulty, the explicit step (ii) of (12) is replaced by an 
implicit one which is unconditionally stable and efficient. We use an alternating direction implicit 
(Peaceman-Rachford) a lg~r i th rn '~  which may be summarized as follows. Instead of step (ii), we 
write 

After discretization, (15) reduces to the solution of two linear tridiagonal systems and, for our low 
Prandtl number problem, the size of the time step is then governed by (1 3). 

5. FINITE ELEMENTS 

Let us cover the flow domain with a mesh of quadrilateral finite elements, and let us select the 
velocity components, the pressure and the temperature as dependent variables. Let N be the 
number of nodal values associated with u, u and T, with shape functions $i, and M those associated 
with p ,  with shape functions @i. The finite element representation for the dependent variables is 
indicated by a star superscript; we write 
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N N 

u * =  1 ujIjj, u * =  2 VjIjj,  
j =  1 j =  1 

N M 

j =  1 j =  1 
T* = 1 TjIjj, p* = 1 pj4j, 

where U j ,  V j ,  Tj  and P ,  denote nodal values which may depend upon time. 
Before performing the space discretization, one needs to obtain the weak form of the set of partial 

differential equations (6). Let u', u', T', p' denote weighting functions associated with u, v, p and T 
respectively. By means of an integration by parts it is easy to obtain the weak equations given as 
follows: 

( + + 2 -  a " )  + (;,;; --+- + ( ur, - ; -u+-u au au au ) =<u',CJx>, ax at ax a y  

g + ;) = 0 

aT' aT + -,- + T ' , - + - u + - u  = - ( T ' , - q )  aT' aT h((x'd*) ( a y  a y ) )  ( E ) f, 
where the simple brackets denote the L2 scalar product over the flow domain and the double 
brackets indicate the same product along the boundary. The symbol C J ~ ,  CJ,, denote the x and y 
components of the surface force vector, and q = - aT/an denotes the outgoing heat flux on the 
boundary. 

In the present paper, we will use the Bubnov-Galerkin formulation. The representations 
u*, u*, p* ,  T* are substituted for u, u, p ,  T in (17), and the weak form (17) remains valid whenever 
the weighting functions u', u', p', T are replaced by one of the shape functions of the associated 
variable u, u, p or T. Under such circumstances, the weak form (17) indicates that the 
representations u*, u* and T* must be Co-continuous, whereas p* needs only be C-'-continuous. 
The finite element used in the present investigation is shown in Figure 3; for the velocity 
components we use a nine-node Lagrangian quadrilateral with biquadratic shape functions. For 

* P  

0 

* P  *P 

- u , v , 1  

Figure 3. Nine-node quadrilateral element: the velocity components and the temperature are defined at  the mid-side nodes 
and the pressure is a complete first degree polynomial within each element 
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the pressure, we have found it optimal to use a discontinuous representation. Within each 
element, the pressure is represented by a complete first-order polynomial. Each additional element 
within a large mesh introduces eight nodal velocity components and three nodal pressures 
associated with three incompressibility constraints on the velocity field. A comparison of the 
performances of several elements for the present application has been given by Crochet et aI . 'O 

Let V, P and T denote the vectors of nodal values for the velocity components, the pressure and 
the temperature respectively. The application of the Bubnov-Galerkin formulation along the lines 
which we have just described produces a set of non-linear algebraic equations which may be 
written in the following symbolic form: 

MV + K(V) + LT + CP = F, 

CTV = 0, (18) 

M'T + K'(V)T = F'. 

In (1 8), M and M' are mass matrices, K(V) and K'(V) contain the advection-diffusion contributions, 
LT is the discretized buoyancy term, and CT is the divergence matrix. The right-hand sides F and F' 
contain the contributions from the boundary conditions. 

If the unknown vectors V, T and P in (18) are time-dependent, (18) forms a set of ordinary 
differential equations with t as the independent variable. In order to describe the time discretization 
used in the present paper, let us rewrite the system (18) in the compact form 

A Z  = B(Z)Z, (19) 

where Z is the vector of unknowns containing V,P and T. We consider a set of discrete times 
to ,  t , ,  . . . , t,, t,, l , .  . . ; Z, is the vector of unknowns at time t,. A comparison of various algorithms 
has been given by Crochet et al." Here, we will briefly review the time-discretization algorithm 
which we have retained in our later work, and which is a predictor-corrector procedure developed 
by Gresho et ul." 

In order to show briefly the main steps of the calculation, let us assume that the values of 
Zn-l ,Zn and kn-l  are known. 

(i) Using the trapezoidal rule, we calculate the value of Z, as follows: 

$(in-, +in) = (Z, - z,- l ) /dtn-l  (20) 
(ii) We calculate a predicted value Z,P+ by means of a second-order extrapolation based on 

the values Z,, Z,- and Z,; one obtains easily 

z,P+ = Z" + %[ ( 2  + 5) z, - %in- 1 ]  

2 at,- 1 d t n -  1 

It is not necessary to calculate a predicted value for the pressure P. 

second-order approximation in time: 
(iii) Using again the trapezoidal rule, we discretize the system (19) by means of the following 

A(Zn+ 1 - z n ) / d t n  - 3CB(Zn+ 1 )Zn + 1 + B(Zn)ZnI = 0, (22) 
The non-linear system (22) in Z, + is then solved at each time step by means of a Newton- 
Raphson algorithm. The most efficient procedure is to use Z,P+ as the initial guess and to 
perform only one iteration for solving (22). A sufficient accuracy is maintained provided 
that the next time step is correctly selected. A procedure for choosing St,+ 1,  based on the 
evaluation of the difference (Z, + - Z,P+ 1) ,  may be found in Reference 1 1 .  

We have seen in section 2 that our problem is characterized by a low value of the Prandtl 
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number, which reduces the influence of the velocity field upon the evaluation of the temperature 
field. It has been found quite economical to decouple the problem by first solving the energy 
equation at each time step and then the equations of motion and the incompressibility constraint. 
The cost of the calculation is then essentially divided by two. 

In later sections, we will also be interested in steady-state results. Rather than calculating the 
limit of the transient flow, we will then solve the steady-state version of (18), i.e. 

K(V)V + LT + CP = F, 

CTV = 0, (23) 
K’(V)T = F’. 

For solving (23), we use a Newton-Raphson algorithm and iterate until the relative error at a given 
iteration lies below a pre-assigned bound. A number of four to five iterations is typical for reaching 
a relative error of 

6. STEADY-STATE BEHAVIOUR 

We have considered three different geometries in our work, with values of the ratio L/h equal to 2,4 
and 8, respectively. The ratio L/h = 8 corresponds to a crucible which is, say, 20 cm long and 2.5 cm 
deep; the ratios 4 and 2 would roughly correspond to the same crucible at various stages of the 
solidification process. In a subsequent paper, we will calculate the actual shape of the liquid-solid 
interface. For the finite difference calculations, we have used grids containing 32 x 16 cells when 
L/h is 2 or 4, and 64 x 16 cells when L/h = 8. For the steady state finite element calculations when 
L/h = 4, we have used a uniform finite element mesh of 16 x 8 elements. Since we use nine-node 
quadrilateral elements, the total number of nodes is the same with our finite difference and steady- 
state finite element calculations. The transient finite element results have been obtained with a 
graded finite element mesh of 22 x 9 elements when L/h = 4; the mesh is shown in Figure 4. All our 
calculations have been performed with non-dimensional variables, and the solutions are governed 
by the aspect ratio, the Prandtl number and the Rayleigh or the Grashof number. In our examples, 
the non-dimensional temperature will be 1 on the left wall and 0 on the right. Isotherms correspond 
to values of T = 0,0.1,0.2.. . In the analysis of the transient behaviour, we have used the non- 
dimensional time variable defined in (5). The use of a non-dimensional time is not appropriate 
however for the physical understanding of the results. Whenever we refer to time values or use it as 
an abscissa, we convert it to a dimensional time based on the values h = 2.5 cm and v = 0.5 cs, and 
thus t/t* = 1250. 

With the use of the same dimensional quantities, it is also interesting to translate the values of the 
Rayleigh and the Grashof numbers into temperature differences between the end walls. Results 
obtained on the basis of the definition (7) of Gr are given in Table 11. 

Since each time increment of the flow calculation generates a large file containing the values of 
the velocity components, the pressure and the temperature, it is convenient to select a scalar 

Figure 4. Graded finite element mesh for the aspect ratio L/h = 4 
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Table 11. Correspondence between the Rayle- 
igh number, the Grashof number and the actual 
temperature difference between the end walls 

when h = 2.5 cm and Pr = 0.015 

Ra Gr To - 7-1 

1000 66,666 0.57 
5000 333,333 2.86 
10,000 666,666 5.72 
20,000 1,333,333 1 1.44 

parameter for monitoring the transient flow behaviour. We have selected the kinetic energy per 
unit thickness in the direction perpendicular to the plane of the flow, defined by 

n 

K = J +p(u2 + v2)dQ, 
R 

where R is the flow domain. The results will be expressed in terms of a non-dimensional kinetic 
energy defined as follows: 

r 

K* = J + ( u * ~  + v*2)dR*, 
R* 

where R* is the non-dimensional flow domain. The kinetic energy K* is a global quantity which 
we have preferred to a local value such as the temperature at one point of the flow domain. 

For solving steady-state flows with finite elements, we use the Newton-Raphson algorithm, with 
the converged solution at a lower value of Gr as a first guess. With the transient finite difference and 
finite element programs, we suddenly increase the value of Gr (or, equivalently, the temperature 
difference between the end walls) and use the final state at the lower Grashof number as our initial 
conditions. Several hundred time steps may be required before a steady-state (or a periodic flow) is 
reached; typically, the kinetic energy exhibits a significant overshoot which is associated with the 
flow configuration at the previous value of the Grashof number, until the flow is rearranged and 
corresponds to the new value of Gr. 

For our study of the steady-state behaviour, let us concentrate on the aspect ratio L/h = 4. When 
Gr is very low, we expect that the warm particles on the left wall will float towards the cold wall and 
generate a unicellular flow. At the low value of Ra=500 or G r = 3 3 , 3 3 3  (with an actual 
temperature difference of 0.28"C between the end walls), one finds that the flow is already 
characterized by a double cell, and the isotherms are only slightly influenced by the advective 
terms. Figure 5 shows the growth of K* as a function of the previously defined dimensional time, 
and Figure 6 shows the streamlines and the isotherms obtained with finite differences and finite 
elements, respectively. These solutions have been obtained with a fixed temperature field imposed 
on the bottom and on the upper surfaces. The finite difference and finite element solutions are the 
same for all practical purposes and give confidence in the accuracy of the codes. A typical 
dimensional velocity on the free surface is of the order of 0.3 cm/s. 

When Gr = 66,666, the behaviour of K* as a function of time, shown in Figure 5, gives a preview 
of the oscillatory behaviour to be studied in section 7. The present curve corresponds to an 
insulated free surface; the isotherms, shown in Figure 7, deviate strongly from vertical lines, but the 
streamlines are little affected by the change of boundary conditions. Indeed, the flow is driven by 
the horizontal temperature gradient which remains essentially uniform throughout the flow. We 
find in Figure 5 that a steady-state is not reached after 300 s, and that the period is of the order of 
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Figure 5. Growth of the non-dimensional kinetic energy as a function of time for Gr = 33,333,66,666 and 316,666; L/h = 4 
and Pr = 0.0 15 

Figure 6. Steady-state streamlines and isotherms at Gr = 33,333, obtained with finite differences (left) and finite elements 
(right); the temperature is imposed on the free surface 

Figure 7. Steady-state streamlines and isotherms at Gr = 66,666 (finite elements); the heat flux vanishes on the free surface 
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Figure 8. Steady-state streamlines at Gr = 133,333 and Gr = 266,666 (finite elements) 

Figure 9. Steady-state isotherms at Gr = 316,666 (finite elements) with both types of boundary conditions 

90 s. A similar behaviour is found for values of Gr equal to 133,333 and 266,666. The steady-state 
streamlines are shown in Figure 8. The streamlines at Gr = 266,666 exhibit the flow configuration 
which will lead to the sustained periodic oscillations at higher values of Gr, i.e. three main vortices 
and two smaller ones in between. 

Comparing the behaviour of K* at Gr=33,333 and Gr=66,666 as a function of time in 
Figure 5, we may expect that the oscillatory behaviour will become undampened at  some value of 
Gr. Indeed, Gr = 316,666 is the highest value for which it is possible to obtain a steady-state 
solution with the finite element program which solves the system (23). Beyond that value, Newton- 
Raphson iterations cease to converge, even with very small increments in Gr. For the same value of 
Gr = 316,666, the finite difference program, starting from the solution at a lower value of Gr, 
exhibits a periodic curve for the kinetic energy shown in Figure 5, with a period of 31.6 s based on 
an average of three periods. The same case has been run with our finite element transient code on a 
graded mesh. It is again found that the oscillatory behaviour is essentially undampened at  
Gr = 316,666 with a period of 33 s as compared with 31.6 s from finite differences. Such minor 
discrepancies may be expected since our finite difference code is of the first order in time whereas 
the finite element code is of the second order. The important result is that the steady-state 
program loses convergence and both transient programs give rise to an undampened oscillation 
at the same value of Gr. The isotherms of the steady solution at Gr = 316,666 are shown in Figure 9 
for the two types of boundary conditions. One finds that the isotherms in the cold region (where 
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solidification occurs) are now much more affected by advection, in particular when the heat flux 
vanishes on the free surface. The velocity component on the free surface is of the order of 
1.4cm/s, with a temperature difference of 2.7" C across the boat. 

7. OSCILLATORY BEHAVIOUR 

We have found in section 6 that the steady-state flow configuration is subdivided into several 
vortices. Their length across the boat is not uniform. We must indeed recall that the upper 
boundary is a free surface; the material particles accelerate freely on the free surface, and the 
symmetrical pattern which we might expect within a cavity made of no-slip walls is lost. When the 
temperature gradient increases, the oscillatory behaviour which is detected in the generation of the 
vortices gets undampened. We wish now to investigate more closely the kinematics of the periodic 
motion with L/h equal to 4 and 8, respectively, when the temperature profile is imposed on the 
upper and on the lower boundaries. 

Figure 10 shows curves of the kinetic energy as a function of time obtained with finite elements 
when Llh, whereas Figure 11 shows similar curves obtained with finite differences when L/h = 8. 
Again, a dimensional time has been used for the physical interpretation of the results. Typically, 
the kinetic energy climbs to a maximum value, with a flow configuration similar to its initial 
value. The occurrence of the maximum is followed by a rapid decrease of the kinetic energy, 
which tends rapidly to a periodic behaviour. One should observe that the pattern of the kinetic 
energy is faithfully reproduced at each period; this is quite noticeable on the second graph of 
Figure 10. When Gr is high, a true periodic pattern is not reached even after several hundred 
time steps. In Figure 11, we find that, for Gr = 2,666,666, a small period of 13 s is superposed upon 
a period of about 50s. 

Table 111 gives the values of the period found as a function of Gr and L/h, and these results are 
shown on the plot of Figure 12. It is clear that the period of oscillation decreases when Gr increases. 
In comparing results with L/b = 4 and 8, respectively, it is found that Gr defined by (7) may not be 
the optimal non-dimensional parameter. Considering that the flow is driven by the horizontal 
temperature gradient, it would be desirable to find the same value of Gr for Llh = 4 and 8 when the 
temperature gradient is the same. Thus, instead of (7), we would use 

(26) 

KINETIC ENERGY KINETIC ENERGY 
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0.0 

> 0.7 

5 0.6 

:: 

0.5 

0.4 

0.3 
680.0 700.0 720.0 740.0 
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Figure 10. Behaviour of the non-dimensional kinetic energy as a function of time for Gr = 666,666 and Gr = 1,333,333, 
obtained with finite elements; the aspect ratio L/h = 4 
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Figure 11. Behaviour of the non-dimensional kinetic energy as a function of time for Gr = 666,666,1,333,333 and 2,666,666, 
obtained with differences; the aspect ratio L/h = 8 

Table 111. Period of oscillation as a function of the Grashof 
number when L/h = 4 and 8, respectively, obtained with finite 

elements and finite differences 

Gr L/h Gr' Period (FD) Period (FE) 
~~ 

3 16,666 4 79,166 31.5 33 
666,666 4 166,666 20 22 

666,666 8 83,333 27 - 
8 166,666 19.25 - 

2,666,666 8 333,333 13 - 

1,333,333 4 333,333 15 17 
3,333,333 4 833,333 6.5 

1,333,333 

- 

The values of Gr' are given in Table 111, and the second plot of Figure 12 shows the period as a 
function of Gr'. We note that, under such circumstances, we obtain very similar values for both 
aspect ratios. Again, we find that the periods obtained with finite elements are about 10 per cent 
higher than those obtained with finite differences. 

Let us now examine the kinematics of the flow as a function of time throughout a period. 
Figure 13 shows a typical period when L/h = 4 and Gr = 1,333,333, obtained with finite differences 
(although the finite element results are identical), which is representative of all results found with 
the same aspect ratio. The flow contains essentially five vortices. The main vortex on the cold wall is 
fairly stable whereas the other four alternate in size and intensity. At this high value of Gr, the 
isotherms deviate considerably from the vertical, and their shape oscillates with the periodic 
growth and decay of the vortices. In Figure 14, we show the streamlines and the isotherms when 
L/h = 8 for Gr = 2,666,666. The value of Gr' is the same for Figures 13 and 14, and we find that the 
patterns of the streamlines are very similar in the neighbourhood of the cold wall. 
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Figure 12. Plot of the period of oscillation in the melt as a function of Gr and Gr', for L/h = 4 and 8; finite difference results 

We have also calculated the flow for Llh = 4 when instead of imposing the temperature field on 
the free surface, we assume that the heat flux vanishes. For Gr = 666,666, one finds (with finite 
differences) a period of 17.5 s, compared with 20 s found when the temperature is imposed on the 
free surface. The streamlines throughout a period are essentially the same with both types of 
boundary conditions, whereas the isotherms are strongly affected by the periodic motion, since 
they are not attached to the upper boundary. 

Finally, we have calculated the flow when L/h = 4 and the temperature profile is imposed on the 
free surface, with a Prandtl number of 0.05 instead of 0.015. Since the flow is driven by the 
horizontal temperature gradient, we may expect similar behaviours when Pr = 0.015 and 
Pr = 0.05, provided that Gr remains identical. However, heat convection should be more 
important when Pr = 0.05. A steady state finite element solution has been found up to Gr = 400,000 
with Pr = 0.05, against Gr = 316,666 with Pr = 0.015. At Gr = 666,666, the flow is oscillating 
with a period of 19 s against 20 s with Pr = 0.015. The streamlines show the same pattern in 
both situations, but the isotherms are much more distorted at  the higher value of Pr. A typical 
transient flow pattern is shown in Figure 15. 

8. CONCLUSIONS 

In the present paper, we have described a two-dimensional mechanism for the onset of periodic 
oscillations in a melt under the action of a horizontal temperature gradient. Steady-state finite 
element and time-dependent finite difference and finite element methods have been adapted to the 
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study of low Prandtl number flows. There is total agreement between the results obtained with 
these different techniques. The loss of convergence of the steady-state finite element method 
coincides with the onset of oscillations detected by the time-dependent methods. The order of 
magnitude of the periods of oscillation agrees with experimental data. 

The possibility of three-dimensional perturbations has been omitted at the outset. In later 
papers, we will investigate the effect of finite lateral boundary conditions upon the flow. 

-..- 

Figure 13. Streamlines and isotherms during a full period of oscillation at Gr = 1,333,333 with L/h = 4; finite difference 
results. A graph is shown every two seconds 
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Figure 14. Streamlines and isotherms during a full period of oscillation at Gr = 2,666,666 with L/h = 8; finite difference 
results. A graph is shown every two seconds 

Figure 15. Typical streamlines and isotherms at Gr = 666,666 and Pr = 0.05, with L/h = 4; finite difference results 
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